MicroRNAs targeting Nicastrin regulate Aβ production and are affected by target site polymorphisms.

TitleMicroRNAs targeting Nicastrin regulate Aβ production and are affected by target site polymorphisms.
Publication TypeJournal Article
Year of Publication2014
AuteursDelay, C, Dorval, V, Fok, A, Grenier-Boley, B, Lambert, J-C, Hsiung, G-Y, Hébert, SS
JournalFront Mol Neurosci
Volume7
Pagination67
Date Published2014
ISSN1662-5099
Abstract

Despite the growing number of genome-wide association studies, the involvement of polymorphisms in microRNA target sites (polymiRTS) in Alzheimer's disease (AD) remains poorly investigated. Recently, we have shown that AD-associated single-nucleotide polymorphisms (SNPs) present in the 3' untranslated region (3'UTR) of amyloid precursor protein (APP) could directly affect miRNA function. In theory, loss of microRNA (miRNA) function could lead to risk for AD by increasing APP expression and Aβ peptide production. In this study, we tested the hypothesis that Nicastrin, a γ-secretase subunit involved in Aβ generation, could be regulated by miRNAs, and consequently affected by 3'UTR polymorphisms. Bioinformatic analysis identified 22 putative miRNA binding sites located in or near Nicastrin 3'UTR polymorphisms. From these miRNA candidates, six were previously shown to be expressed in human brain. We identified miR-24, miR-186, and miR-455 as regulators of Nicastrin expression, both in vitro and under physiological conditions in human cells, which resulted in altered Aβ secretion. Using luciferase-based assays, we further demonstrated that rs113810300 and rs141849450 SNPs affected miRNA-mediated repression of Nicastrin. Notably, rs141849450 completely abolished the miR-455-mediated repression of Nicastrin. Finally, the rs141849450 variant was identified in 1 out of 511 AD cases but not in 631 controls. These observations set the stage for future studies exploring the role of miRNAs and 3'UTR polymorphisms in AD.

DOI10.3389/fnmol.2014.00067
Alternate JournalFront Mol Neurosci
PubMed ID25100943
PubMed Central IDPMC4103510