LPS induces ALOX5 promoter activation and 5-lipoxygenase expression in human monocytic cells.

TitleLPS induces ALOX5 promoter activation and 5-lipoxygenase expression in human monocytic cells.
Publication TypeJournal Article
Year of Publication2020
AuteursPoirier, SJ, Boudreau, LH, Flamand, N, Surette, ME
JournalProstaglandins Leukot Essent Fatty Acids
Volume154
Pagination102078
Date Published2020 Mar
ISSN1532-2823
Abstract

5-lipoxygenase (5-LO), coded by the ALOX5 gene, is expressed in leukocytes and catalyzes the formation of leukotrienes, pro-inflammatory lipid mediators. Leukotrienes are central to immune responses, but are also involved in inflammatory disorders and 5-LO expression is associated with leukemia stem cell survival. It is therefore important to understand mechanisms that control 5-LO expression. This study investigated the control of 5-LO expression and leukotriene biosynthesis following the maturation of human monocytic cells. MonoMac-1 (MM1) and THP-1 cells were incubated for up to 72 h with or without LPS and TGF-β. LPS, but not TGF-β, increased CD14 expression in both MM1 and THP-1 cells. Incubation with LPS (100 ng/ml) and TGF-β (1 ng/ml) synergistically increased the capacity of MM1 cells to produce 5-LO products from undetectable levels to 40±5 pmol/10 cells. 5-LO product biosynthesis in THP-1 cells increased 25-fold. A synergistic effect of LPS and TGF-β was measured with increases in 5-LO mRNA of 54- and 13-fold in MM1 and THP-1 cells, respectively. 5-LO protein expression increased significantly in both MM1 and THP-1 cells. ALOX5 promoter activity was significantly elevated >2-fold in both cell lines following LPS treatment, but TGF-β was without effect. The main 5-LO products were cysteinyl-leukotrienes, however LPS and TGF-β did not impact on the capacity of the cells to metabolize leukotriene A. Overall, this study demonstrates that receptor-mediated stimulation of MM1 and THP-1 cells by LPS is associated with increased 5-LO expression. This represents a new mechanism by which leukotriene biosynthesis can be modulated by pathological agents.

DOI10.1016/j.plefa.2020.102078
Alternate JournalProstaglandins Leukot. Essent. Fatty Acids
PubMed ID32120263