Long-distance migratory shorebirds travel faster towards their breeding grounds, but fly faster post-breeding.

TitleLong-distance migratory shorebirds travel faster towards their breeding grounds, but fly faster post-breeding.
Publication TypeJournal Article
Year of Publication2019
AuteursDuijns, S, Anderson, AM, Aubry, Y, Dey, A, Flemming, SA, Francis, CM, Friis, C, Gratto-Trevor, C, Hamilton, DJ, Holberton, R, Koch, S, McKellar, AE, Mizrahi, D, Morrissey, CA, Neima, SG, Newstead, D, Niles, L, Nol, E, Paquet, J, Rausch, J, Tudor, L, Turcotte, Y, Smith, PA
JournalSci Rep
Date Published2019 Jul 01

Long-distance migrants are assumed to be more time-limited during the pre-breeding season compared to the post-breeding season. Although breeding-related time constraints may be absent post-breeding, additional factors such as predation risk could lead to time constraints that were previously underestimated. By using an automated radio telemetry system, we compared pre- and post-breeding movements of long-distance migrant shorebirds on a continent-wide scale. From 2014 to 2016, we deployed radio transmitters on 1,937 individuals of 4 shorebird species at 13 sites distributed across North America. Following theoretical predictions, all species migrated faster during the pre-breeding season, compared to the post-breeding season. These differences in migration speed between seasons were attributable primarily to longer stopover durations in the post-breeding season. In contrast, and counter to our expectations, all species had higher airspeeds during the post-breeding season, even after accounting for seasonal differences in wind. Arriving at the breeding grounds in good body condition is beneficial for survival and reproductive success and this energetic constraint might explain why airspeeds are not maximised in the pre-breeding season. We show that the higher airspeeds in the post-breeding season precede a wave of avian predators, which could suggest that migrant shorebirds show predation-minimizing behaviour during the post-breeding season. Our results reaffirm the important role of time constraints during northward migration and suggest that both energy and predation-risk constrain migratory behaviour during the post-breeding season.

Alternate JournalSci Rep
PubMed ID31263125
PubMed Central IDPMC6603026
Grant ListIT04216 / / Mitacs /