The influence of sex and neonatal stress on medullary microglia in rat pups.

TitleThe influence of sex and neonatal stress on medullary microglia in rat pups.
Publication TypeJournal Article
Year of Publication2018
AuthorsBaldy, C, Fournier, S, Boisjoly-Villeneuve, S, Tremblay, M-È, Kinkead, R
JournalExp Physiol
Date Published2018 Sep

NEW FINDINGS: What is the central question of the study? Does neonatal stress, in the form of neonatal maternal separation, influence the maturation of microglial density, morphology and neuronal signalling in medullary regions regulating cardiorespiratory function in rat pups? What is the main finding and its importance? Using Iba-1 immunohistochemistry, we show that neonatal maternal separation augments microglial density and the proportion of cells with an amoeboid morphology in the medulla. Although the current understanding of the effect of early life stress on medullary development is relatively limited, these data show that within this area, microglia are affected by neonatal stress. Microglia could therefore be important effectors in cardiorespiratory disorders resulting from maternal separation.ABSTRACT: Neonatal stress has wide-ranging consequences for the developing brain, including the medullary cardiorespiratory network. In rat pups, the reflexive cardiorespiratory inhibition triggered by the presence of liquids near the larynx is augmented by neonatal maternal separation (NMS), especially in males. Sex-specific enhancement of synaptic connectivity by NMS might explain this cardiorespiratory dysfunction. Microglia influence the formation, maturation, activity and elimination of developing synapses, but their role in the wiring of medullary networks is unknown. Owing to their sensitivity to sex hormones and stress hormones, microglial dysfunction could contribute to the abnormal cardiorespiratory phenotype observed in NMS pups. Here, we first used ionized calcium-binding adapter molecule-1 (Iba-1) immunolabelling to compare the density and morphology of microglia in the medulla of male versus female rat pups (14-15 days old) that were either undisturbed or subjected to NMS (3 h day ; postnatal days 3-12). Neonatal maternal separation augmented the density of Iba-1 cells (caudal region of the NTS), increased the size of the soma and reduced the arborization area (especially in the dorsal motor nucleus of the vagus). Sex-based differences were not observed. Given that the actions of microglia are regulated by neuronal fractalkine (CX CL ), we then used western blot analysis to compare the expression of CX CL and its microglial receptor (CX CR ) in medullary homogenates from control and NMS pups. Although CX CR expression was 59% greater in males versus females, NMS had no effect on CX CL /CX CR signalling. Given that an amoeboid morphology reflects an immature phenotype in developing microglia, NMS could interfere with synaptic pruning via a different mechanism.

Alternate JournalExp. Physiol.
PubMed ID29920821